Variogram estimation in the presence of trend.

نویسندگان

  • Nikolay Bliznyuk
  • Raymond J Carroll
  • Marc G Genton
  • Yuedong Wang
چکیده

Estimation of covariance function parameters of the error process in the presence of an unknown smooth trend is an important problem because solving it allows one to estimate the trend nonparametrically using a smoother corrected for dependence in the errors. Our work is motivated by spatial statistics but is applicable to other contexts where the dimension of the index set can exceed one. We obtain an estimator of the covariance function parameters by regressing squared differences of the response on their expectations, which equal the variogram plus an offset term induced by the trend. Existing estimators that ignore the trend produce bias in the estimates of the variogram parameters, which our procedure corrects for. Our estimator can be justified asymptotically under the increasing domain framework. Simulation studies suggest that our estimator compares favorably with those in the current literature while making less restrictive assumptions. We use our method to estimate the variogram parameters of the short-range spatial process in a U.S. precipitation data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Grade estimation of Zu2 Jajarm deposit by considering imprecise variogram model parameters based on the extension principle

Nowadays, kriging has been accepted as the most common method of grade estimation in mineral resource evaluation stage. Access to the crisp assay data and a variogram model are the necessary means for the utilization of this method. Since fitting a crisp variogram model is generally difficult, if not impossible, the fitted theoretical model is usually tainted with uncertainty due to various rea...

متن کامل

Nonlinear disjunctive kriging for the estimating and modeling of a vein copper deposit

ABSTRACT Estimation of mineral resources and reserves with low values of error is essential in mineral exploration. The aim of this study is to estimate and model a vein type deposit using disjunctive kriging method. Disjunctive Kriging (DK) as an appropriate nonlinear estimation method has been used for estimation of Cu values. For estimation of Cu values and modelling of the distributio...

متن کامل

OPTIMAL SELECTION OF NUMBER OF RAINFALL GAUGING STATIONS BY KRIGING AND GENETIC ALGORITHM METHODS

In this study, optimum combinations of available rainfall gauging stations are selected by a model which is consist of geo statistics model as an estimator  and an optimized model. At the  first,  watershed  is  approximated  to  several  regular  geometric  shapes.  Then  kriging calculates  the  variance &nbs...

متن کامل

Analysis of Rainfall Data by Robust Spatial Statistics using S+SPATIALSTATS

This paper discusses the use of robust geostatistical methods on a data set of rainfall measurements for Switzerland. The variables are detrended via nonparametric estimation penalized with a smoothing parameter. The optimal trend is computed with a smoothing parameter based on cross-validation. The variogram is then estimated by a highly robust estimator of scale. The parametric variogram mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and its interface

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2012